摘要 血管内皮屏障功能的调节机制相当复杂。α-凝血酶等炎症性介质引起内皮通透性增高的机制可能是通过G蛋白激活磷脂酶,介导三磷酸肌醇等第二信使产生,并进一步激活蛋白激酶C和肌球蛋白轻链激酶,最终引起球蛋白轻链磷酸化,从而导致内皮细胞F-肌动蛋白骨架重排,中心张力增加,细胞间裂隙形成,内皮细胞通透性发生改变。
Research Progress on Regulation of Vascular endothelial Barrier Function
XIAO Zhen-Liang,SUN Geng-Yun(Institute of Respiratory diseases,Xinqiao Hospital,Third Military Medical University,Chongqing 400037)
Abstract The regulatory mechanisms of vascular endothelial barrier function are complicated.Inflammatory mediators,such as-α-thrombin,activate phospholipases to mediate generation of IP3 ans other second messsengers through receptor-coupled G protein.Protein kinase C and myosin light chain kinase are then activated,leading to phosphorylation of myosin light chains,rearrangement of F-actin skeleton,interendothelial cell gap formation and increased endothelial permeability.
Key words Barrier function;Endothelium;Permeablity;Regulation
血管内皮包括内皮细胞(EC)单层和基膜,是血管腔面的一层半选择性通透屏障。血管内外溶质和液体的交换受体内皮通透性大小控制。通透性是检测内皮屏障功能的客观计量指标。许多炎性、成血栓性(thrombogenic)介质均可损伤内皮屏障功能,导致其通透性增高,血浆蛋白渗出,引起组织、器官水肿和功能障碍。血管内皮屏障功能障碍是炎症的主要特征之一,并参与肿瘤转移、免疫反应及多器官功能障碍的发生。本文就近年来血管内皮障碍功能调节的研究进展,特别是有关的信号转导机制作一简要综述。
一、内皮细胞间连接与内屏障功能
溶质分子跨内皮转运有三条途径[1],即细胞旁扩散(paracellular diffustion)、穿细胞通道(transcellular channel)和胞内小泡介导途径(vesicle-mediated pathway)。其中细胞旁扩散是主要途径。正常情况下,内皮对溶质分子的通透有选择性;大分子物质如白蛋白仅少量经穿细胞通道和小泡介导途径转运至内皮外。当内皮屏障功能受损时,由于EC间裂隙形成,内皮对溶质分子的选择性丧失,大分子物质主要经细胞旁扩散转运[1,2]。
EC间存在紧密连接、中间连接和缝隙连接[2,3]。缝隙连接主要存在于动脉EC间,静脉EC间也有少量存在,新近发现人脐动、静脉内皮的缝隙连接含有Cx37、Cx40和Cx43三种连接素(connexin)[3]。紧密连接和中间连接则普遍存在于EC间。细胞间接损伤导致EC间裂隙形成和内皮通透性增高,是通透性水肿发生的基础。
(一)紧密连接 紧密连接多存在于EC的近腔面。有的环绕整个细胞形成闭锁小带;有的则间断存在,称为闭锁斑。闭锁小带只见于脑血管内皮,其它器官EC间主要是闭锁斑。电镜观察发现,EC间的紧密连接部位存在由双侧胞膜形成的叶片(leaflets)状结构,彼此粘合紧密,对溶质分子的跨内皮转运起限制作用。紧密连接的胞浆面还存在着一种分子量为225kD蛋白质ZO-1[1,2],与胞内F-肌动蛋白骨架相连。
细胞骨架包括微丝、微管和中间丝。微丝主要由F-肌动蛋白、肌球蛋白、原肌球蛋白和α-辅肌动蛋白组成,F-肌动蛋白骨架包括不同的微丝束类型,如应力纤维、细胞周边的致密外周束(dense peripheral band)、中央短纤维等[4,5]。它们之间可以相互转化。位于核周的中央短纤维产生的中心张力(centripetal tesion)是调节内皮通透性的直接动力。中心张力来源于肌球蛋白轻链(MLC)磷酸化介导的肌动-肌球蛋白间相互作用[3]。它与由EC间连接、EC-基膜间粘附所产生的拴缚力(tethering force )是一对作用方向相反的力。前者使EC产生收缩;后者的作用则将EC与EC、EC与基膜拴缚在一起。两者平衡时,EC间隙和骨皮通透性维持正常状态;当内皮受到炎性介质如α-凝血酶等刺激时,F-肌动蛋白骨架发生重排,中心张力增加并通过ZO-1使细胞间连接发生改变,结果细胞收缩变圆,EC间裂隙形成,内皮通透性增高[5,6]。
(二)中间连接 内皮中间连接发生在相邻细胞的钙粘附素(cadherins)分子之间,由Ca2++介导,以同质粘健(homotypic adhesion)的方式使两侧的钙粘附素分子端-羰连接[2]。同持粘附是指同种分子之间发生的粘附。钙粘附素分子的中一端通过纽带蛋白(vinculin)、α-辅肌动蛋白和catenin与F-肌动蛋白呈链状连接,因此F-肌动蛋白骨架的变化可通过以上链状结构影响中间连接,使EC间裂隙和内皮通透性发生改变。Ca2+通过影响钙粘附素之间及钙粘附素与catenin之间的连接参与内皮屏障功能的调节,起着“钙开关”的作用。胞内Ca2+浓度([Ca2+]i)升高,内皮屏障功能下降;Ca2+]i下降到原来水平,内皮屏障功能又恢复正常[2]。
总之,细胞旁扩散是溶质跨内皮转运的主要途径;中心张力和拴缚力之间的平衡,直接影响细胞间连接和EC间裂隙形成,是内皮屏障功能的决定因素。
二、基膜对内皮屏障功能的影响
血管内皮屏障包括EC单层和基膜。基膜由胶原蛋白、蛋白多糖、弹性蛋白、糖蛋白和纤维蛋白等生物大分子构成。这些分子相互交联形成复杂的网状结构,是EC的惰性支持物。近年来发现,内皮基膜对溶质和液体的跨内皮转运有重要影响。实验发现,去除基膜后内皮对白蛋白的通透性可增加14倍[7]。
(一)基膜成分与内皮通透性 胶原是构成基膜的主要成分之一,对39-110kD的溶质分子有选择通透性;用Ⅰ型胶原覆盖微孔滤膜,可使其对白蛋白的通透性降低30%;在培养液中加入抗坏血酸,可通过刺激胶原合成增加,降低人脐静脉内皮细胞(HUVEC)单层对大分子物质的通透性[8]。Partridge等发现,104U/ml的肿瘤坏死因子α(TNFα)即可诱导牛肺微血管内皮细胞单层通透性增高。其机制是TNFα诱导EC产生了一种96kD的明胶酶,裂解了基质成分如纤维连接蛋白、层粘蛋白、明胶及IV、V型胶原[9]。Partridge还发现,低氧引起内皮通透性增高时,EC间裂隙增宽,