3 脉冲场凝胶电泳(PFGE)
小的DNA分子(<30~40kb)在琼脂糖凝胶电泳中的泳动速度与其大小的对数成反比,而大的DNA分子其泳动速度却与其大小无关,只与电泳材料的孔径有关。由此Schwartz等提出改变电泳或电场的方法可达到分离大分子DNA的目的[11]。它需要提取大分子量的DNA,再用稀有切割酶将DNA切成50kb以上的高分子量DNA。由于稀有切割酶的识别位点多为6个碱基,而其中又往往含有CpG二核苷酸。因为CpG二核苷酸多以甲基化的形式存在于脊椎动物基因组中,易于脱氨和发生C→T转化突变;这种情况多在脊椎动物已知的看家基因5’出现,~40%的基因有组织特异性表达;这样如果在基因组DNA中检测到一个稀有切割酶识别位点,在很大程度上就可以认为是一个CpG岛和一个基因的5’端。此外,基因组DNA的甲基化是组织和发育阶段特异性且经常甲基化不完全,这样用稀有切割酶切割就产生消化不全现象,不同的甲基化类型具有不同的消化产物,在PFGE电泳上就可区分出个体的不同组织、不同个体的同一组织、不同种类的个体和由体细胞杂交制备的DNA等[12]。
PFGE可以产生涵盖50kb到5Mb的基因组图谱,但它比较繁锁和工作量较大。稀有酶的缺乏和稀有切割分布的随机性使得PFGEF方法难以排列数百kb以上的序列。
4 Contig拼接(contig assembly)和染色体步移(chromosome walking)
正如象多态微卫星的出现使基因作图产生革命性变化一样,YACs之类大基因片段(>100kb)的成功分离,使得众多哺乳动物基因组物理标签和长距离图谱的构建成为可能。目前构建YAC文库的载体多为标准的pYAC4载体,它含有着丝粒和端粒以保证染色体在酵母细胞中呈稳定的线性分子。极高分子量的基因组DNA就插入在选择载体的臂之间,连接的人工染色体导入酵母的原生质体中复制并保持稳定。YACs中插入片段的长度在500kb~1Mb之间,它足以被用于物理作图。目前用于YAC文库筛选的方法基于二种基本技术:①是PCR技术[13],②是杂交技术[14]。尽管杂交技术有其特点,但其信号低、重复元件产生的高背景及技术要求高等缺点,使得它已渐渐被PCR方法所淘汰。尤其是IRS-PCR(interspersed repetitive sequence PCR)的出现,更使PCR在其中的优势得到充分体现[15]。一旦YAC的末端被分离,接下来的关键是确定二个末端是否与预期的标签相匹配,由于被分离的YAC末端极少适合于FISH,故只能用Southern杂交;如果这个末端测序后可作为STS(sequence tag site)的话,也可以用PCR的方法进行鉴定。而最简单的方法是通过contig标签与已知YAC比较来确定新YAC的位置;如果这个不行的话,可将末端与体细胞杂交体或放射杂交体板、基因组PFGE图谱等一起分析[16]。
由于YAC克隆存在的一些缺点,如嵌合和重组等,现在又发展了细菌人工染色体(bacterial artificial chromosome,BAC)、噬菌体P1克隆系统和P1衍生的人工染色体(P1-derived artificial chromosome,PACs)等,这些质粒均是在细菌中进行繁殖,易于转导,可对插入末端进行直接测序,有关这些系统的详细情况可从http://bacpac.med.buffalo.edu.中获得。目前BACs和PACs已成为基因组计划的“序列准备”模板(sequence-ready template)。利用文库构建整条染色体或基因组的物理图谱主要采用二种方法:一是使用含有STS的图谱,根据有序的、重叠的STS构建,它的首要前提是高密度、具有良好顺序的STS图谱;二是通过建立大的标签进行指纹分析。利用PCR和杂交,再结合限制酶消化,即可进行染色体步移。
5 基因定位克隆(positional cloning)
基因定位克隆即是一种基因克隆的方法,同时又是一种基因定位方法。一些与遗传病相关基因的克隆多采用这种方法,它先根据已知的遗传标记进行连锁分析和系谱分析,先确定候选基因所在的位置,再通过其它方法获得基因的全部序列。基因的遗传连锁分析原理可参阅文献[17]。大规模遗传连锁分析所需的计算机软件可以从下列网址中获得:http://www.genome.wi.mit.edu/genome-software;突变表型资源库在:http://www.resgen.com和http://www.genome.wi.mit.edu。
基因定位克隆中获得基因序列的方法大致有[18]:①对关键部位进行直接测序,目前已经可以对500kb左右的区域进行直接测序;②比较基因组作图和测序,具体原理在下面讲述,有关的信息可从http://www.ncbi.nlm.nih.gov/XREFdb/中得到;③位置候选分析(positional candidate analysis),从某种程度上讲,它将成为基因定位克隆的标准步骤,它是在被克隆的基因(往往是ESTs形式)和它们相应的染色体位置日前收录在:http://www-shgc/stanford.edu/cgi-bin/smsg#GOTO;④基因结构特征分析,这方面主要有三种方法:HTF岛作图(非甲基化CpG二核苷酸)、进化保守区分析和外显子捕获。HTF作图法根据的是稀有切割酶对基因组DNA的特征性切割,产生可识别的标记,如基因的5’端和CpG二核苷酸等,有人又称这为限制性标记基因组扫描(restriction landmark genome scanning,RLGS)[19];⑤cDNA捕获,它是根据基因组DNA和已知cDNA序列同源,它们就能形成异二聚体。这样将二者接上接头杂交后,再经过PCR扩增等即可得到未知基因。
6 比较基因作图(comparative gene mapping)或比较物理图谱(comparative physical maps)
基因非编码区的进化明显比编码区快得多,通过对不同种已知基因的比较可以发现,不同种属的基因编码区有相当高的同源性,因此可以利用这个特性进行基因作图和基因定位。也就是说,一旦某一性状被定位于动物染色体的一特定区域,这些信息(附近的ESTs和候选基因等)也可以移植到人的相应区域;同时,对一些不能在人体进行的致死性状的研究可以在动物染色体上定位后,再映射到人类染色体的相应位点。在这方面比较新的方法是L-yons等人的比较锚定标签序列(comparative anchor-tagged seque