Ramasamy等和Clark等研究表明,在较高浓度下,无论DHFR-TS正义还是反义的寡聚核苷酸(M1K,M2K),均能抑制裂殖子入侵红细胞[19,20]。究其原因,可能与高浓度的AON带有较多的负电荷有关。Kanagaratnam等(1998)分析了疟原虫裂殖子表面蛋白基因的反义和正义寡聚核苷酸对疟原虫体外生长的影响[21],无论AON单独使用抑或与脂质体混合使用,均未观察到特异抑制效应。但在相同浓度范围内,反义和正义寡核苷酸以及具有多聚阴离子的硫酸葡聚糖,均可抑制裂殖子入侵红细胞。当寡聚核苷与阳离子脂质体结合后负电荷被中和时,则对裂殖子入侵红细胞的抑制作用被取消。由此推测,寡聚核苷酸有可能借助其多聚阴离子特性干扰裂殖子与细胞上受体结合,多聚阴离子可能对疟疾病治疗有帮助。
3.1.2 AON不同修饰物对抗疟作用影响
最近,Barker等以DHFR-TS基因为靶,比较了硫代磷酸酯化(PS)、磷酸二酯化(PO)和甲基化修饰AON,以及不同空间结构AON对体外培养虫体生长抑制作用[22]。结果显示,5'和3'端至少含有3个PS基因的PO-PS杂合体AON、全部为PS修饰的AON,与部分PS修饰的AON抑制作用相同。在低浓度下(1μmol/L),PO-PS aON和PS AON比PS-甲基化AON抑制率高25%。此外,通过延长AON序列增加干-环结构形成,提高AON的自我稳定性,结果获得2个有干-环结构的AON(RB39、RB41),其抑虫生长率比序列未延长的AON约要高20%。
3.1.3 AON不同靶基因对抗疟作用影响
AON对不同基因的抑制作用不一致,这和该基因在虫体代谢过程中是否起举足轻重作用密切相关[14]。AON的抗疟研究主要集中在DHFR-TS基因,这固然与其在疟原虫核苷酸代谢中的特殊地位有关(见前述)。Barker等(1996)对恶性疟原虫耐药株多个靶基因的AON作用进行了比较研究[23],方法是将PS aON加入到疟原虫体外培养液中,培养48小时后,通过镜检和3氚-次黄嘌呤掺入试验观察AON对虫体的生长抑制作用。结果表明,抑制作用与AON浓度密切相关。当AON浓度为1μmol/L时,AON呈非特异性抑制;当浓度在0.5-0.005μmol/L范围时,以DHFR-TS、二氢喋呤合成酶、核苷酸还原酶、裂殖体多基因家族和红细胞结合抗原-175为靶的PS aON与对照组相比,均能特异地显著抑制虫体生长(P<0.0001),而DNA聚合酶α的PS aON抑制作用更弱,磷酸丙糖异构酶的PS AON抑制作用则与对照组相同。
疟原虫感染红细胞中,近75%血红蛋白被滋养体降解而形成大量对虫体有害的血红素,必须在消化泡中聚集成对虫体无毒的疟色素[24,25]。研究表明,恶性疟原虫组氨酸富集蛋白(HRP)家族中,HRPⅡ和HRPⅢ有明显的促进疟色素形成功能[26]。因此,如能特异阻断这些基因表达,抑制疟色素的形成,有可能使之成为一种抗疟新途径。HRPⅡ与HRPⅢ从同一祖先基因分化而来,二者高度同源,翻译起始位点附核苷酸序列则完全相同[27,28]。
3.2 锥虫
属于动基体目的布氏锥虫(Trypanosoma burcei)通过抗原不断变异逃避宿主的免疫力,抗原变异是由于不同的变异体专一表面糖蛋白(variant-specific surface glycoprotein,VSG)基因呈间断表达所致,VSG基因表达产物在锥虫表面形成外膜,覆盖虫体[29,30]。研究表明,VSG mRNA可分为二部分[31,32]:一部分是各种变异体特有的主外显子序列,占主要部分;另一部分是共同的5'端小外显子序列,通常为35个核苷酸长,几乎所有的VSG mRNA均含有此序列。实际上,除VSG外,锥虫的钙调蛋白、微管蛋白和磷酸丙糖异构酶mRNA中也存在共同的5'端小外显子序列,这似乎是动基体目寄生原虫编码基因的共同结构特征[32]。由于宿主mRNA无这种小外显子序列,以小外显子序列为靶的AON就很容易实现抑制众多基因表达的效果,使反义核酸抗锥虫感染成为可能。
Cornelissen等应用麦胚提取物转译系统、35S-甲硫氨酸掺入试验和蛋白质SDS-PAGE方法[33],对与锥虫小外显子序列不同位点互补和不同长度的AON体外转译抑制作用进行了比较分析。结果所有AON均能抑制转录,且抑制程度与AON长度和浓度有关,AON越长,浓度越高则抑制作用越强。如3个12nt和AON抑制率达35%-60%,而22nt和34nt aON在浓度为15-30μmol/L时对锥虫总RNA转录抑制率高达95%-100%。在同一转译系统中,BMV病毒(Brome mosaic Virus)和无小外显子序列的锥虫磷酸甘油酸激酶mRNA却完全不受34 nt AON的抑制,与锥虫小外显子序列不互补的18 nt AON对锥虫转译则无任何影响。上述发现充分证明,以锥虫5'端小外显子mRNA序列为靶的AON对转译具有特异抑制作用。
Walder等用兔网织红细胞转译系统,也获得上述相类似的结果[31]。Verspieren等研究表明[34],小外显子AON的二级结构和碱基的修饰会直接影响其与靶mRNA的亲和性,从而间接影响AON的转译抑制效果。如上述与小外显子第2位至第13位碱基互补的12nt aON,虽然抑制布氏锥虫转译,但不能抑制活动锥虫(Trypanosoma vivax)mRNA转译,这显然与二种虫体的小外显子第3位和第7位碱基不同有关。
Verspieren等首次尝试用吖啶衍生物(acridine derivative)修饰布氏锥虫5'端小外显子序列的AON,观察其对培养虫体的杀伤作用[35]。结果表明,连接有吖啶分子的9nt aON与相同长度但未连接吖啶分子的AON相比,能更为有效地抑制锥虫蛋白质的体外合成,且能有效地杀死体外培养虫体。无论如何,未连接吖啶的9nt aON和虽连接吖啶但不与锥虫5'端小外显子序列互补的9nt AON,均不能杀死培养虫体。AON经吖啶修饰后能提高其杀锥虫作用,推测可能与下述因素有关:一是通过吖啶修饰